Quality Checkers Only way to fulfill your dreams	XI-SCI : Maths Method of Induction and Binomial Theorem,	DATE:	
		TIME: 1 Hours 30 Minutes	
		MARKS: 25	
	SEAT NO:		
Note:-			

- 1. All Questions are compulsory.
- 2. Numbers on the right indicate full marks.

Section A

Q.1. Select and write the correct answer.

1. The term not containing x in expansion of $(1-x)^2\left(x+rac{1}{x}
ight)$ is

A)
$${}^{11}C_5$$
 B) ${}^{10}C_3$
C) ${}^{10}C_4$ D) ${}^{10}C_7$

- ^{2.} The coefficient of x^8y^{10} in the expansion of $(x + y)^{18}$ is
 - A) ¹⁸C8 B) ¹⁸P₁₀

C) 2¹⁸ D) none of these

Q.2. Answer the following.

- 1. State by writing first four terms, the expansion of the following, where |x| < 1 $(1 + x^2)^{-1}$
- 2. State by writing first four terms, the expansion of the following, where |x| < 1 $(1 + x)^{-4}$
- 3. Show that $C_0 + C_2 + C_4 + C_6 + C_8 = C_1 + C_3 + C_5 + C_7 = 128$

Section B Attempt any Four

Q.3	Simplify first three terms in the expansion of the following $(1 + 3x)^{rac{-1}{2}}$	(2)
Q.4	State by writing first four terms, the expansion of the following, where $ b $ < $ a $. $(a-b)^{-\frac{1}{4}}$	(2)
Q.5	Use binomial theorem to evaluate the following upto four places of decimals. (1.02) $^{-5}$	(2)
Q.6	Use binomial theorem to evaluate the following upto four places of decimals. (0.98) $^{-3}$	(2)
Q.7	State by writing first four terms, the expansion of the following, where $ b < a $. (a + b) ⁻⁴	(2)

Q.8

Find the middle term (s) in the expansion of $\left(\frac{x}{y} + \frac{y}{x}\right)^{12}$ (2)

(4)

(3)

Section C Attempt any Two

Q.9	Using binomial theorem, find the value of $\sqrt[3]{995}$ upto four places of decimals.	(3)
Q.10	Prove that $\left(\sqrt{2}, \sqrt{2}\right)^6 = \left(\sqrt{2}, \sqrt{2}\right)^6$ or $\left(\sqrt{2}, \sqrt{2}\right)^6$	(3)

Prove that
$$(\sqrt{3} + \sqrt{2})^{*} + (\sqrt{3} - \sqrt{2})^{*} = 970$$

Q.11

Q.11

(3)

(3)

(3)

Q.11 Prove by method of induction, $\log_a x^n = n \log_a x$, x > 0, $n \in N$

Section D Attempt any One

- Q.12 In the expansion of $(k + x)^8$, the coefficient of x^5 is 10 times the coefficient of x^6 . Find the value of k. (4)
- Q.13 Prove by method of induction, for all $n \in N$ $\frac{1}{3.4.5} + \frac{2}{4.5.6} + \frac{3}{5.6.7} + \dots + \frac{n}{(n + 2)(n + 3)(n + 4)} = \frac{n(n + 1)}{6(n + 3)(n + 4)}$ (4)